The Journal of Organic Chemistry

VOLUME 56, NUMBER 18 **AUGUST** 30,1991

0 Copyright 1991 by the American Chemical Society

Communications

Stereochemistry of the Microbial Generation of δ -Decanolide, γ -Dodecanolide, and γ -Nonanolide **from C18 13-Hydroxy, C18 10-Hydroxy, and C19 14-Hydroxy Unsaturated Fatty Acids**

Rosanna Cardillo, Giovanni Fronza, Claudio Fuganti,* Piero Grasselli, Andrea Mele, and Domenica Pizzi

Dipartimento di Chimica del Politecnico, Centro CNR per la Chimica delle Sostanze Organiche Naturali, 20133 Milano, Italy

Gianna Allegrone, Massimo Barbeni, and Antonella Pisciotta

San Giorgio Flavors (Pernod Ricard Group), 10147 Torino, Italy

Received April I, 1991 (Revised Manuscript Received June 19, 1991)

Summary: (S)-&Decanolide **(4)** was **isolated** from cultures of Cladosporium suaueolens **after** the microorganism was fed either (S)- or (R,S)-coriolic acid **(1).** Feeding (R,S) **lO-hydroxyoctadec-(8E)-enoic** acid (2) to Yarrowia *lipo*lytica produced (S) - γ -dodecanolide. When (S) -homocoriolic acid (3) was fed to C. suaveolens, γ -nonalide slightly enriched in the *S* enantiomer was produced. At some stage in the biodegradation of 3, an inversion of configuration, from *S* to R, occurred and was accompanied by the loss of the hydrogen atom originally present on $C-14$, as GLC/MS analysis of the products of feeding **C.** suuveolens with dideuterated **10** showed.

The need by the flavor industry for large quantities of flavoring compounds that meet the requirements of "naturality" dictated by present rules¹ has stimulated the search for enzymic procedures that enable one to convert intermediates readily available from natural sources into the desired products. 2 A pertinent example of such a procedure is the manufacture of (R) - γ -decanolide by the microbial degradation of ricinoleic acid." **Thus,** it seemed reasonable to assume that δ -decanolide (4) and γ -dodecanolide (5) could be similarly prepared by the β -oxidation of the naturally occurring C₁₈ hydroxy fatty acids 1 and 2-oxidation products of linoleic acid and oleic acid, re-

~~ ~~

spectively. Ricinoleic acid occurs in nature only **as** the R enantiomer.⁵ thus its biodegradation provides natural (R) - γ -decanolide. In contrast, both enantiomers of 1 (coriolic acid) occur in plant glycerides. 6 The S enantiomer is accessible by the reduction of the 13-hydroperoxide formed by the lipoxygenation of linoleic acid,' whereas (R, S) -1 can be generated by reduction of the racemic 13-hydroperoxide formed by autoxidation or photooxidation of linoleic acid." Racemic 2 can be similarly obtained from oleic acid! However, **both** 6-decanolide and γ -dodecanolide occur in nature as the R enantiomers,¹⁰

⁽¹⁾ *US. Code of Federal Rederal Regulations,* **1985, 21,101.22a.3.** (2) Teranishi, R. In Flavor Chemistry: Trends and Developments;
Teranishi, R., Buttery, R. G., Shahidi, F., Eds.; ACS Symposium Series
388; American Chemical Society: Washington, DC, 1989; p 1.
(3) U.S. Patent 4,560,656 (

⁽⁵⁾ Howling, D.; Morris, L. J.; Gurr, M. I.; **James, A. J.** *Biochim. Biophys. Acta* **1972,260, 10.**

⁽⁶⁾ Tallent, W. H.; Hains, J.; Wolff, I. A.; Lundin, R. E. Tetrahedron Lett. 1966, 4329. Kato, T.; Yamagouchi, Y.; Hirano, T.; Yokoyama, T.; Ugehara, T.; Namai, T.; Yamanaka, S.; Harada, N. Chem. Lett. 1984, 409. **(7) Axelrod, B.; Cheesbrough, T.; Leasko, S.** *Methoda Emymol.* **1981,** *71,* **441.**

⁽⁸⁾ Gunstone, F. D. In The Lipids Handbook; Gunstone, F. D., Harwood, L. J., Padley, F. B., Eds.; Chapman and Hall: London, 1986; p 453.
(9) Ross, J. J. Am. Chem. Soc. 1949, 71, 282.

which raises questions about the enantioselectivity of enzymic degradation. We now report on the mode of the microbad generation of **4** and **5** from natural **1** and racemic 2, respectively, and of **6** from 3, the unnatural, higher homologue of **1.**

Thus, (S) -coriolic acid $(1)^7$ was fed to growing cultures of **C.** suaveolens (CBS 157.58) (100 mg/100 mL, 2% nutrient Merck, 0.02% Tween 80, pH 7, 27-30 °C). After a 48-h incubation, (S)-6-decanolide **(4)** was obtained in ca. **40%** yield. The optical purity of the precursor was determined by 'H NMR analysis of the derivative formed by the reaction of the methyl ester of **(5')-1** with the 2 **methoxy-2-(trifluoromethyl)phenylacetic** acid [(+)- MTPA $]$.¹¹ It was shown to be ca. 80%, identical to that of the isolated δ -decanolide, which was determined by GLC analysis of suitable derivatives.12 Interestingly, feeding racemic coriolic acid¹³ to *C. suaveolens* also produced (S) - δ -decanolide, of 82% optical purity after 24 h and 79% optical purity after 48 h.

Racemic 2, obtained as a 1:l mixture with its isomer racemic $(10E)$ -9-hydroxyoctadecenoic acid by the reduction of the mixture of hydroperoxides formed by the photooxidation of oleic acid,¹⁴ when fed to C. suaveolens afforded only low yields of the expected y-dodecanolide **(5).** However, 20-3070 conversions of **2** into **5** were observed in *Yarrowia lipolytica* (CBS 2074) after 48 h of incubation. The γ -dodecanolide so obtained was found by GLC analysis with a chiral capillary column¹⁵ to consist predominantly (40% ee) of the S enantiomer. Thus, in both microorganisms, the enzymic system(s) that is (are) responsible for the degradation of the C₁₈ precursors 1 and 2, which bear hydroxyl groups at C-13 and C-10, respectively (i.e,, at odd- and even-numbered positions), show(s) a clear preference for producing the S enantiomers. This behavior appears to be in conflict with the previously reported4 mode of degradation by C. suaveolens of isomeric fatty acids that incorporate the (Z) -CH=CHCH₂CH-(OH)R structural unit $(R = n-alkyl)$. By that mode, racemic precursors that bear the hydroxyl group at an even-numbered position gave (R) - γ -lactones, whereas (S) - δ -lactones were formed from precursors that bear the OH group at an odd-numbered position.

It was then decided to compare the stereochemical outcome of the biodegradation of **1** with that of its higher homologue 3 (homocoriolic acid). After (14S)-3 was fed to C. suaveolens (Scheme I), the γ -nonanolide that was isolated after short incubation was found to be the S enantiomer. However the ee of the product decreased as incubation was continued. After 48 h, the ee, as determined by GLC analysis on the chiral capillary column, was 20%. However, after the C_{19} precursor had been consumed, the concentration of 4-hydroxynonanoic acid rapidly decreased and the γ -nonanolide that was isolated was predominantly the R enantiomer. As time passed, the enantiomeric purity increased, eventually reaching **70%** ee. When racemic 4-hydroxynonanoic acid-4-d was fed to **C.** suaveolens, rather rapid degradation was observed. The γ -nonalolide that was isolated was enriched in the R en-

^o (i) Ph₃P/NBS/CH₂Cl₂; (ii) Ph₃P/toluene/reflux; (iii) Me₃COK, **then OHC(CH₂)₃CO₂Me; (iv) LiOH; (v) D₂/Lindlar; (vi) soybean** lipoxygenase/pH 9/0 °C; (vii) HSCH₂CO₂Na.

antiomer, the ee of which increased with the passage of time. No loss of deuterium was detected. These facts seem to render unlikely the possibility of a bioconversion of the S into the R enantiomer by way of a redox process. Racemic 3 gave, after a 48-h incubation under the same conditions, (S) - γ -nonanolide with an ee of 42%.

It **was** then decided to determine the fate of the hydrogen atom originally present at $C-14$ of *(S)*- and *(R_nS*)-3 during the bioconversion of those compounds into γ -nonanolide **(6).** To this end, **(lOZ,l3Z)-nonadecadienoic** acid- $13,14$ -d₂ (9) was synthesized from non-3-yl-1-ol (7) via 8 (Scheme I).¹⁶ This material was rapidly lipoxygenated by treatment with soybean lipoxygenase at pH 9 and 0° C. Reduction of the hydroperoxide so formed gave the desired **(148)-13,14-dideuterated** compound **10** (90% ee). The

assignment of S configuration to **12** and the estimate of the compound's optical purity are based on the similar behavior, upon ¹H NMR and HPLC analysis,¹⁷ of the (+)-MTPA derivative of the methyl ester of **10** and that of the corresponding (S)-coriolic acid derivative and also on the known S enantioselectivity¹⁸ of lipoxygenations by soybean lipoxygenase. The 2H NMR spectrum of the y-nonanolide isolated after a 48-h incubation of **10** with C. suaveolens showed signals at 1.30,0.93, and 3.70 ppm, which corresponded to H-3, H-3', and **H-4,** respectively. The H-3:H-3':H-4 signal ratio was about 6:4:4, which indicated that the labels were located at C-3 and C-4 in a ca. 2:l ratio. GLC/MS analysis of this material with the chiral capillary column indicated that the S enantiomer (58% of the mixture) was 91.9% dideuterated, 5.2% monodeuterated, and 2.9% undeuterated, whereas the *R* enantiomer (42% of the mixture) was 89.5% monodeuterated and 10.5% undeuterated. This information permitted the assignment to the deuterated *(S)-* and

⁽¹⁰⁾ Engel, K. H. In *Bioflouour'dir;* **Schreier, P., Ed.; De Gruyter: Berlin. 1988. D 75.**

⁽¹¹⁾ **Van Os, C. P. A.; Veute, M.; Vliegenthart, J. F. G. Biochim. (12) Gesener, M.; Deger, W.; Moaandl, A. 2.** *Lebensm. Unters. Forsch. Biophys.* **Acto 1979,574, 103.**

^{1988.} 186.417.

⁽¹³⁾ Rama Rao, A. V.; Reddy, E. R.; Sharma, G. V. M.; Yadagiri, P.; Yadav, J. S. J. Org. Chem. 1988, 51, 4158.
Yadav, J. S. J. Org. Chem. 1988, 51, 4158.
(14) Arnone, A.; Assante, G.; Caronna, T.; Di Modugno, V.; Nasini, G

⁽¹⁵⁾ A Megadex 1 (permethylatad 8-cyclodextrin-coated fused silica capillary column) obtained from Mega erl, 20035 Legnano, Italy.

^{~ ~~~~~~~ ~~} **(16) Bradshaw, R. W.; Day, A. C.; Jonea, E. R. H.; Page, C. B; We?, V.; Vere Hodge, R. A.** *J. Chem.* **SOC. C 1971, 1166.**

⁽¹⁷⁾ Andre, J. C.; Funk, M. 0. *Anal.* **Biochem. 1986,158, 316. (18) Zhang, P.; Kyler, K.** 5. *J. Am.* **Chem. SOC. 1989,111,9241.**

 (R) - γ -nonanolides biosynthesized from dideutero (14S)-10 the structures **11** and 12, respectively. Thus, during the degradation of C_{19} (14S)-10 to (4R)- and (4S)-4-hydroxydecanoic acid, the loss of the hydrogen atom originally located on the hydroxyl-substituted carbon atom occurs, at some point, only from that species that undergoes inversion of configuration. In support of this view are the results of feeding experiments with (14R,S)-16-14-d, prepared from 13 by way of 14 and $15.^{17}$ The γ -nonanolide that was isolated after a 34-h incubation was a **72:28** mixture of the S enantiomer **(95.2%** monodeuterated, 4.8% undeutrated) and the R enantiomer (38.9% monodeuterated, 61.1% undeuterated). **NMR** analyais indicated that the retained deuterium atom is located on C-4 of **6.** It thus seems that both enantiomers of homocoriolic acid (3) are converted into γ -nonanolide (6), but at different rates and by different mechanisms. The S enantiomer of 3 is metabolized at a faster rate, and the deuterium **atom** at C-14 is lost from that fraction of the material that **ia** converted into (R)-6. The *R* enantiomer of 3 is degraded at a slower rate directly to (R) - γ -nonanolide and retains throughout the hydrogen **atom** originally present on the hydroxyl-substituted carbon atom.

Possible intermediates in the degradation of 3 to 6 are shown in Scheme II. It is possible that the C_{11} species 17, which possesses Z,E stereochemistry, could undergo isomerization, by way of 18, to **19,** which incorporates the α -E-configured double bond that apparently is required for further β -oxidation.¹⁹ It may be that a satisfactory explanation for the loss of deuterium is to be found in knowledge of mechanisms of the conversion of **(8-17 into** (R)-19 and in the conformational changes, which accompany that conversion.

Acknowledgment. We thank Rosanna Bernardi for analytical **assistance.** This work was supported financially by Progetto Strategico CNR Sviluppo Tecnologico P & M Imprese.

Registry No. 1,10219-69-9; 2,115511-53-0; 3,135106-69-3; 4, 59285-67-5; 5, 69830-92-8; 6, 104-61-0; 9, 135106-70-6; 10, 135106-71-7; 11, 135106-72-8; 12, 135106-73-9; (±)-16-14d, **135106-74-0.**

Production of 2-Octenyl Radicals from the Fe(II1) *0* **Bleomycin-Mediated Fragmentation of 10-Hydroperoxy-8,12-octadecadienoic Acid**

Anand Natrajan and Sidney M. Hecht*

Departments *of Chemistry* and Biology, University *of* Virginia, Charlottesville, Virginia **22901** Received May **16,1991**

Summary: The Fe(III).BLM-mediated fragmentation of **10-hydroperoxy-8,12-octadecadienoic** acid was demonstrated unambiguously to occur via homolytic *0-0* bond scission.

The bleomycins (BLMs) are a family of glycopeptidederived antibiotics with clinically useful antitumor activity.' In the presence of metal ions such **as** Fe2+, bleomycin forms a binary complex [Fe(II).BLM] that *can* reductively activate molecular oxygen.² The resulting unstable and reactive species termed 'activated bleomycin" is believed to be an oxygenated metallobleomycin.³ Activated bleomycin degrades DNA^{2,3} and RNA⁴ and also oxidizes and

Scheme I. Decomposition of 10-Hydroperoxy-8,12-octadecadienoic Acid (1) to **lO-Oxo-8-decenoic Acid (2) via Homolytic** *0-0* **Bond scission**

oxygenates low molecular weight substrates such **as** styrene and naphthalene.⁵ Burger et al. have shown that the same activated bleomycin is accessible from either Fe(II)-BLM $+$ O₂ or Fe(III)-BLM + H_2O_2 ;^{3f} the latter reaction is analogous to the 'peroxide shunt" pathway in cytochrome P-450 activation by various oxygen transfer agents.⁶

⁽¹⁹⁾ GaUiard, T. In Recent Aduances in the Chemistry **and** Biochemistry *of* Plant Lipids; Galliard, T., Mercer, E. I., **Ede.;** Academic Press: Lnodon, **1975;** p **318.**

⁽¹⁾ (a) Umezawa, H. In Bleomycin: Current Status and New Deuel- **o** ments; Carter, **S. K.,** Crooke, **5.** T., Umezawa, H., **Eds.;** Academic New Sphering, Carter, S. K., Crooke, S. 1., Omezawa, H., Eust, Resubship, T., Okami, Y. J.
Antibiot. 1966, 19, 200. (c) Umezawa, H. Pure Appl. Chem. 1971, 28, 665.
(d) Umezawa, H. Biomedicine 1973, 18, 459. (e) Hecht, S. M. In mycin: Chemical, Biochemical and Biological Aspects; Hecht, S. M., Ed.; Springer-Verlag: New York, 1979.

[.] **(2)-(a)** Dabrowiak, J. C. Ah. **lnorg.** Chem. **1982,4,70. (b)** Hecht, **5. M.** Acc. Chem. Res. **1986,19,83.** (c) Stubbe, J.; Kozarich, J. W. Chem. Reu. **1987.87. 1107.**

^{(3) (}a) Sausville, E. A.; Peisach, J.; Horwitz, S. B. Biochem. Biophys.
Res. Commun. 1976, 17, 814. (b) Sausville, E. A.; Stein, R. W.; Peisach, J.; Horwitz, S. B. Biochemistry 1978, 17, 2746. (c) Burger, R. M.; Horwitz, S S. B., Feissch, 3.; wittenberg, J. B. J. Biot. Chem. 1919, 254, 12259. (d)
Sugiura, Y.; Kikuchi, T. J. Antibiot. 1979, 31, 1310. (e) Kuramochi, H.;
Takahashi, K.; Takita, T.; Umezawa, H. J. Antibiot. 1981, 34, 576. (f)
Bur **(g)** urger, **R.** M.; Kent, T. A,; Honvitz, **S.** B.; Munck, **E.;** Peiesch, J. *J.* Biol. Chem. **1989,258, 1559.**

^{(4) (}a) Magliozzo, R. S.; Peisach, J.; Ciriolo, M. R. Mol. Pharmacol. **1989,35,428. (b)** Carter, B. J.; de Vroom, **E.; Long, E. C.; van** der Marel, G. A.; **van** Boom, J. H.; Hecht, **S. M.** Bot. Natl. Acad. Sci. U.S.A. **IWO, 87, 9373.**

^{(5) (}a) Murugesan, N.; Ehrenfeld, G. M.; Hecht, S. M. J. Biol. Chem.
1982, 257, 8600. (b) Ehrenfeld, G. M.; Murugesan, N.; Hecht, S. M. *Inorg.*
Chem. 1984, 22, 1496. (c) Murugesan, N.; Hecht, S. M. J. Am. Chem. Soc.
1985, Mentzer, M. A.; Long, **E.** C.; Hecht, **S.** M. Znorg. Chem. **1987,26,3896.**