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Summary: (S)-&Decanolide (4) was isolated from cultures 
of Cladosporium suaueolens after the microorganism was 
fed either (S)- or (R,S)-coriolic acid (1). Feeding (R,S)- 
lO-hydroxyoctadec-(8E)-enoic acid (2) to Yarrowia lipo- 
lytica produced (S)-y-dodecanolide. When (S)-homoco- 
riolic acid (3) was fed to C. suaueoZens, y-nonalide slightly 
enriched in the S enantiomer was produced. At some stage 
in the biodegradation of 3, an inversion of configuration, 
from S to R, occurred and was accompanied by the loss 
of the hydrogen atom originally present on '2-14, as 
GLC/MS analysis of the products of feeding C. suuveolens 
with dideuterated 10 showed. 

The need by the flavor industry for large quantities of 
flavoring compounds that meet the requirements of 
%aturalityn dictated by present rules' has stimulated the 
search for enzymic procedures that enable one to convert 
intermediates readily available from natural sources into 
the desired products.* A pertinent example of such a 
procedure is the manufacture of (R)-y-decanolide by the 
microbial degradation of ricinoleic acid." Thus, it seemed 
reasonable to assume that 6-decanolide (4) and y-dode- 
canolide (5) could be similarly prepared by the &oxidation 
of the naturally occurriag CI8 hydroxy fatty acids 1 and 
2-oxidation products of linoleic acid and oleic acid, re- 
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spectively. Ricinoleic acid occurs in nature only as the R 
enantiomer: thus its biodegradation provides natural 
(R)-y-decanolide. In contrast, both enantiomers of 1 
(coriolic acid) occur in plant glycerides! The S enan- 
tiomer is accessible by the reduction of the 13-hydroper- 
oxide formed by the lipoxygenation of linoleic acid,' 
whereas (R,S)-l can be generated by reduction of the ra- 
cemic 13-hydroperoxide formed by autoxidation or pho- 
tooxidation of linoleic acid." Racemic 2 can be similarly 
obtained from oleic acid! However, both 6-decanolide and 
y-dodecanolide occur in nature as the R enantiomers,'0 
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which raises questions about the enantioselectivity of en- 
zymic dtgradation. We now report on the mode of the 
microbad generation of 4 and 5 from natural 1 and racemic 
2, respectively, and of 6 from 3, the unnatural, higher 
homologue of 1. 

Thus, (S)-coriolic acid (lI7 was fed to growing cultures 
of C. suaveolens (CBS 157.58) (100 mg/100 mL, 2% nu- 
trient Merck, 0.02% 'heen 80, pH 7,27-30 "C). After a 
48-h incubation, (S)-6-decanolide (4) was obtained in ca. 
40% yield. The optical purity of the precursor was de- 
termined by 'H NMR analysis of the derivative formed 
by the reaction of the methyl ester of (5')-1 with the 2- 
methoxy-2-(trifluoromethyl)phenylacetic acid [(+)- 
Ml'TA].l1 It was shown to be ca. 80%, identical to that 
of the isolated b-decanolide, which wm determined by GLC 
analysis of suitable derivatives.12 Interestingly, feeding 
racemic coriolic acidlS to C. suaveolens also produced 
(5')-6-decanolide, of 82% optical purity after 24 h and 79% 
optical purity after 48 h. 

Racemic 2, obtained as a 1:l mixture with its isomer 
racemic (lOE)-9-hydroxyodadeoic acid by the reduction 
of the mixture of hydroperoxides formed by the photo- 
oxidation of oleic acid," when fed to C. suuveolens afforded 
only low yields of the expected y-dodecanolide (5). How- 
ever, 20-3070 conversions of 2 into 5 were observed in 
Yarrowia lipolytica (CBS 2074) after 48 h of incubation. 
The y-dodecanolide so obtained was found by GLC 
analysis with a chiral capillary column16 to consist pre- 
dominantly (40% ee) of the S enantiomer. Thus, in both 
microorganisms, the enzymic system(s) that is (are) re- 
sponsible for the degradation of the Cla precursors 1 and 
2, which bear hydroxyl groups at  C-13 and C-10, respec- 
tively (i.e,, at odd- and even-numbered positions), show(s) 
a clear preference for producing the S enantiomers. This 
behavior appears to be in conflict with the previously re- 
ported4 mode of degradation by C. suaveolens of isomeric 
fatty acids that incorporate the (Z)-CH=CHCH&H- 
(0H)R structural unit (R = n-alkyl). By that mode, ra- 
cemic precursors that bear the hydroxyl group at an 
even-numbered position gave (R)-y-lactones, whereas 
(S)-&lactones were formed from precursors that bear the 
OH group at an odd-numbered position. 

It was then decided to compare the stereochemical 
outcome of the biodegradation of 1 with that of its higher 
homologue 3 (homocoriolic acid). After (14S)-3 was fed 
to C. suaveolens (Scheme I), the y-nonanolide that was 
isolated after short incubation was found to be the S en- 
antiomer. However the ee of the product decreased as 
incubation was continued. After 48 h, the ee, as deter- 
mined by GLC analpis on the chiral capillary column, was 
20%. However, after the ClS precursor had been con- 
sumed, the concentration of 4-hydroxynonanoic acid rap- 
idly decreased and the y-nonanolide that was isolated was 
predominantly the R enantiomer. As time passed, the 
enantiomeric purity increased, eventually reaching 70% 
ee. When racemic 4-hydroxynonanoic acid-4-d was fed to 
C. suaveolens, rather rapid degradation was observed. The 
y-nonalolide that was isolated was enriched in the R en- 

Communication8 

(10) Engel, K. H. In Bioflouour'dir; Schreier, P., Ed.; De Gruyter: 
Berlin. 1988. D 75. 

(11) VM ' 6 8 ,  C. P. A.; Veute, M.; Vliegenthart, J. F. G. Biochim. 

(12) Gesener, M.; Deger, W.; Moaandl, A. 2. Lebensm. Unters. Forsch. 
Biophys. Acto 1979,574, 103. 

1988. 186.417. 
(13) &a &IO, A. V.; Reddy, E. R.; Sharma, G. V. M.; Yadagiri, P.; 

Yadav. J.  S. J .  Om. Chem. 1988.51.4158. 
~ - . . - - -. - . , - - - - 

(14) h o n e ,  A.; Assante, G.; Caronna, T.; Di Modugno, V.; Naeini, G. 

(15) A Megadex 1 (permethylatad 8-cyclodextrin-coated fused silica 
Phytochemutry 1988,27, 1669. 

capillary column) obtained from Mega erl, 20035 Legnano, Italy. 

Scheme Io 

-=-OH 

7 

-=- COOH 
8 

vi, vii 
OOH - 

D D  
9 

O (i) Ph P/NBS CH2C12; (ii) Php/toluene/reflux; (iii) Me3COK, 
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lipoxygenase/pH 9/0 OC; (vii) HSCH2C02Na. 

antiomer, the ee of which increased with the passage of 
time. No loas of deuterium was detected. These facts seem 
to render unlikely the possibility of a bioconversion of the 
S into the R enantiomer by way of a redox process. Ra- 
cemic 3 gave, after a 48-h incubation under the same 
conditions, (S)-y-nonanolide with an ee of 42%. 

It was then decided to determine the fate of the hy- 
drogen atom originally present at C-14 of (5')- and ( R a - 3  
during the bioconversion of those compounds into y-no- 
nanolide (6). To this end, (lOZ,l3Z)-nonadecadienoic 
acid-13,14-d2 (9) was synthesized from non-3-yl-l-o1(7) via 
8 (Scheme I).16 This material was rapidly lipoxygenated 
by treatment with soybean lipoxygenase at pH 9 and 0 OC. 
Reduction of the hydroperoxide so formed gave the desired 
(148)-13,14-dideuterated compound 10 (90% ee). The 
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13, R E OH; R'= H; R2 = Me 
14, R,R' = 0; R2 = Me 

R k1 

15, R,W = D, OH; I? = Me 
16, R,W = D, OH; I? = H 

assignment of S configuration to 12 and the estimate of 
the compound's optical purity are based on the similar 
behavior, upon 'H NMR and HPLC analysis,17 of the 
(+)-MTPA derivative of the methyl ester of 10 and that 
of the corresponding (S)-coriolic acid derivative and also 
on the known S enantioselectivity18 of lipoxygenations by 
soybean lipoxygenase. The 2H NMR spectrum of the 
y-nonanolide isolated after a 48-h incubation of 10 with 
C. suaveolens showed signals a t  1.30,0.93, and 3.70 ppm, 
which corresponded to H-3, H-3', and H-4, respectively. 
The H-3:H-3':H-4 signal ratio was about 6:4:4, which in- 
dicated that the labels were located at C-3 and C-4 in a 
ca. 2:l ratio. GLC/MS analysis of this material with the 
chiral capillary column indicated that the S enantiomer 
(58% of the mixture) was 91.9% dideuterated, 5.2% 
monodeuterated, and 2.9% undeuterated, whereas the R 
enantiomer (42% of the mixture) was 89.5% mono- 
deuterated and 10.5% undeuterated. This information 
permitted the assignment to the deuterated (S)- and 
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(R)-ynonanolides bioeynthesized from dideutero (14s)-10 
the structures 11 and 12, respectively. Thus, during the 
degradation of Clg (14s)-10 to (4R)- and (481-4-hydroxy- 
decanoic acid, the loss of the hydrogen atom originally 
located on the hydroxyl-substituted carbon atom occurs, 
at  some point, only from that species that undergoes in- 
version of configuration. In support of this view are the 
results of feeding experiments with (14R,S)-16-14-d, pre- 
pared from 13 by way of 14 and 15." The y-nonanolide 
that was isolated after a 34-h incubation was a 72:28 
mixture of the S enantiomer (95.2% monodeuterated, 
4.8% undeutrated) and the R enantiomer (38.9% mono- 
deuterated, 61.1% undeuterated). NMR analyais indicated 
that the retained deuterium atom is located on C-4 of 6. 
It thus seems that both enantiomers of homocoriolic acid 
(3) are converted into y-nonanolide (61, but at different 

ratas and by different mechanisms. The S enantiomer of 
3 is metabolized at a faster rate, and the deuterium atom 
at C-14 is lost from that fraction of the material that ia 
converted into (R)-6. The R enantiomer of 3 is degraded 
at a slower rate directly to (R)-r-nonanolide and retains 
throughout the hydrogen atom originally present on the 
hydroxyl-substituted carbon atom. 

Possible intermediates in the degradation of 3 to 6 are 
shown in Scheme 11. It is possible that the CI1 species 
17, which possesses 23 stereochemistry, could undergo 
isomerization, by way of 18, to 19, which incorporates the 
a-E-configured double bond that apparently is required 
for further 8-0xidation.'~ It may be that a satisfactory 
explanation for the loss of deuterium is to be found in 
knowledge of mechanisms of the conversion of (8-17 into 
(R)-19 and in the conformational changes, which accom- 
pany that conversion. 
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Summary: The Fe(III).BLM-mediated fragmentation of 
10-hydroperoxy-8,12-octadecadienoic acid was demon- 
strated unambiguously to occur via homolytic 0-0 bond 
scission. 

The bleomycins (BLMs) are a family of glycopeptide- 
derived antibiotics with clinically useful antitumor activ- 
ity.' In the presence of metal ions such as Fe2+, bleomycin 
forms a binary complex [Fe(II).BLM] that can reductively 
activate molecular oxygenS2 The resulting unstable and 
reactive species termed 'activated bleomycin" is believed 
to be an oxygenated metallobleomycin.s Activated bleo- 
mycin degrades DNAr3 and RNA' and also oxidizes and 

(1) (a) Umezawa, H. In Bleomycin: Current Status and New Deuel- 
o ments; Carter, S. K., Crooke, 5. T., Umezawa, H., Eds.; Academic New 
&rk,.1978. (b) Umezawa, H.; Maeda, K.; Takeuchi, T.; Okami, Y. J. 
Antihot. I-, 19,200. (c1 Umezawa, H. Pure Appl. Chem. 1971,28,685. 
(d) Umeuwa,. H. Biomedieine 1973,18,459. (e) Hecht, S. M. In Bleo- 
mytin: Chemical, Biochemical and Biological Aspects; Hecht, S. M., Ed.; 
Sorinncr-Verlan: New York. 1979. . (2)-(a) Dabrowiak, J. C. A h .  lnorg. Chem. 1982,4,70. (b) Hecht, 5. 
M. Acc. Chem. Res. 1986,19,83. (c) Stubbe, J.; Kozarich, J. W. Chem. 
Reu. 1987.87. 1107. 

(3) (a) &&&, E. A.; Peimch, J.; Horwitz, S. B. Biochem. Biophys. 
Res. Commun. 1976,17,814. (b) Saunville, E. A,; Stein, R. W.; Peiesch, 
J.; HoAvitz, S. B. Biochemistry 1978,17,2746. (c) Burger, R M.; Horwitz, 
S. B.; Pekch ,  J.; Wittenberg, J. B. J. Biol. Chem. 1979,264,12299. (d) 
S 'u~(L, Y.; Kikuchi, T. J. Antibiot. 1979,31, 1310. (e) Kuramochi, H.; 
T L h i ,  K.; Takita, T.; Umezawa, H. J. Antibiot. 1981,34,576. (0 
Bwger, R. M.; Pcimch, J.; Horwitz, S. B. J. Biol. Chem. 1981,256,11636. 
(g) urger, R. M.; Kent, T. A,; Honvitz, S. B.; Munck, E.; Peiesch, J. J .  
Biol. Chem. 1989,258, 1559. 

0022-3263/91/1956-5239$02.50 J O  

Scheme I. Decomporition of 
lO-Hydroperoxy.8,12-octad~a~enoic Acid (1) to 

lO-Oxo-8-decenoic Acid (2) via Homolytic 0-0 Bond 
scission 
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oxygenates low molecular weight substrates such as styrene 
and naphthalene? Burger et al. have shown that the same 
activated bleomycin is accessible from either Fe(II)-BLM + O2 or Fe(I1I)eBLM + H202;x the latter reaction is 
analogous to the 'peroxide shunt" pathway in cytochrome 
P-450 activation by various oxygen transfer agents? 
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